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Abstract—With the advent of the 6G era, the construction of
space networks is gradually entering a peak period. Tiansuan
constellation came into being in this context, which aims to
provide an open research platform for researchers. Tiansuan
constellation can be used as the coverage supplement of terrestrial
networks and the traffic supplement in hotspot areas, providing
flexible, efficient, and seamless coverage of humanized services
for global users. Satellite network resource management is
more difficult than terrestrial network resource management
due to the heterogeneity and difference in characteristics of
satellite and terrestrial networks. This paper proposes a multi-
dimensional network resource allocation algorithm for the Tian-
suan constellation. Considering the limited storage resources and
bandwidth resources of the satellite Internet, and taking into
account the computing resources of the satellite Internet, the
joint optimization of multi-dimensional resources is realized. The
policy network-based reinforcement learning model is adopted to
independently optimize the decision-making process of satellite
Internet resource allocation. Compared with the two baseline al-
gorithms, the proposed algorithm improves the network resource
allocation profit and user service rate by 29.9% and 10.7%,
respectively. In addition, the effectiveness and flexibility of the
proposed scheme are verified by adjusting the storage resource
requirements of users.

Index Terms—Tiansuan Constellation, Resource Management,
Policy Network, Reinforcement Learning

I. INTRODUCTION

The Russian-Ukrainian conflict that began in February 2022
has attracted worldwide attention. It is worth the attention
of academia and industry that satellites are also active in
this event. SpaceX provided Ukraine with Starlink services
and a batch of Starlink terminals. It can be speculated that
Starlink will play an important role in reconnaissance, de-
tection, jamming, and attack. Starlink also restores instant
communication capabilities to civilian areas damaged by war.
For example, a Starlink terminal can provide communication
services for a series of villages on a 10-kilometer road [1].
It cannot be ignored that the construction of satellite Internet
has entered the fast lane. Major commercial companies have
launched a considerable number of satellites to form their own
satellite Internet. Musk’s Starlink program has launched more
than 2,900 satellites, and the number is expected to reach
12,000 by 2025. The UK’s OneWeb programme has launched
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428 satellites into low Earth orbit on its 10th anniversary. In
addition, Russia, China, and Japan have launched hundreds of
satellites for various purposes, ranking among the top in the
world.

Researchers investigated the integration and evolution pro-
cess of 5G and satellite Internet [2]. In the initial and middle
stages, the interworking gateway and the satellite network
as the access network are used to realize the integration
of the two. In the long-term stage, the ultimate goal is to
deploy the core network functions on the satellite Internet.
Comprehensively improve the performance of satellite Internet
from the aspects of business continuity assurance, security, and
QoS control. The arrival of the 6G era has opened the prelude
to the construction of the space-air-ground integrated network
[3]. With its wide coverage, high deployment flexibility, and
no geographical restrictions, satellite Internet can be used as
a traffic supplement for terrestrial hotspots and as a supple-
ment for coverage in some regions [4]. In order to keep up
with the trend of satellite Internet construction, we proposed
the Tiansuan constellation, which is an open experimental
platform that provides a real satellite environment. Tiansuan
constellation supports experiments in multiple fields, including
but not limited to the 6G core network, satellite IoT, satellite
operating system, AI, and hardware platform. At present, the
construction of the Tiansuan constellation is in the first stage,
and it is planned to launch 6, 24, and 300 satellites in three
stages [5], [6].

A practical problem that needs to be faced is how to
allocate satellite network resources efficiently. On the one
hand, satellite Internet network resources are limited. Limited
computing resources often require satellites to offload com-
puting tasks to other satellites or ground stations, which in
turn causes related issues such as channel interference and
mobility management. The limited communication resources
can significantly increase network latency. This situation will
be more serious in an environment with unstable links. On
the other hand, the access of a large number of terminals to
the satellite Internet will bring about differentiated resource
requirements, so it is necessary to improve the rationality
of resource allocation. The random allocation of satellite
resources will lead to the generation of excessive resource
debris. Excessive energy consumption will also reduce satellite
life. In the future, the Tiansuan constellation will conduct



a large-scale network of massive satellites. Therefore, the
Tiansuan Constellation will inevitably face urgent resource
scheduling needs.

The industry has carried out extensive research in the field
of satellite network resource allocation [7]. Referring to the
resource management method of the terrestrial Internet, meth-
ods such as mathematical programming [8], optimization [9],
and machine learning (ML) [10] are usually used to manage
satellite Internet resources. Davoli et al. [11] optimized the
bandwidth resources from the aspects of satellite architecture
and algorithms. Combining the advantages of edge computing
and cloud computing, Gao et al. [8] defined satellite Internet
resource allocation as a virtual network function placement
problem. Then the distributed algorithm based on integer
nonlinear programming is adopted to solve the problem.
Zhang et al. [12] decomposed the data scheduling and multi-
dimensional resource management of satellite Internet into a
mixed integer programming problem, and then used matching
theory and the simplex method to solve it. Large-scale satellite
Internet has more practical application significance. Abe et
al. [13] defined the optimization of resource allocation for
large-scale satellite communication systems as a mixed integer
programming problem. Deng et al. [14] optimized the problem
of hierarchical heterogeneous satellite Internet capacity man-
agement by using a genetic algorithm with the goal of user
experience quality. With the development and popularization
of AI applications, Machine learning has become a reliable
solution to the bottleneck problems in real production and
life. The same is true in the field of satellite Internet resource
allocation. Considering the high computational complexity of
the traditional iterative scheme, Wang et al. [15] proposed
to use a combination of ML and an optimization scheme to
solve the problem of satellite task classification and power
allocation. With the goal of maximizing the amount of satellite
IoT data, Zhou et al. [16] used model-free reinforcement
learning to uniformly schedule satellite resources and IoT data,
which provided a powerful reference for future satellite IoT
system design.

In this paper, we propose a policy network-based rein-
forcement learning scheme to guide and optimize resource
management for satellite Internet. The resource allocation
efficiency based on machine learning is proved to be superior
to traditional optimization schemes, especially in the case of
complex network scale and resource conditions [17]. Large-
scale satellite networking is an inevitable trend in the future
development of satellite Internet. However, the existing re-
search has not done enough work on the resource management
of large-scale satellite Internet, ignoring the possible impact
of multi-dimensional network resource coordination on the
performance of the scheme. In addition, users’ demands for
satellite network resources are differentiated for massive termi-
nal access. Therefore, it is necessary to make a differentiated
arrangement of multi-dimensional satellite Internet resources.
To this end, this paper mainly does the following work. The
satellite Internet model and user request model are established
based on the research background of the Tiansuan constel-

lation. A reinforcement learning model based on the policy
network is proposed. By extracting and perceiving the at-
tributes of satellite network resources, the intelligent agent can
continuously optimize resource allocation decisions. Finally,
the proposed algorithm is tested in terms of network resource
allocation profit and the number of service users to verify the
effectiveness and flexibility of the algorithm. The proposed
scheme will be deployed and verified on satellites launched by
Tiansuan constellation, and are expected to provide a reference
for other satellite constellation systems.

Section II introduces the system model, including the
Tiansuan constellation networking model, the user request
model, and related formulas. Section III shows the design
and implementation process of the multi-dimensional resource
allocation algorithm based on the policy network in detail. In
Section IV, the proposed algorithm is tested and the obtained
results are analyzed. Finally, the full paper is summarized.

II. SYSTEM MODEL

A. Physical Network Model

The physical network model of satellite Internet is estab-
lished based on the Tiansuan constellation. We only consider
satellites with computing power in the Tiansuan constellation.
Model the satellite internet as a weighted graph. Each satellite
serves as a vertex of the weighted graph, and the channel links
between satellites serve as edges. The entire satellite physical
network is represented as SG = {NP , LP , AP }, where NP

includes all satellite nodes, LP is the channel link set, and AP

represents the relevant resource attributes of satellite Internet.
A specific satellite node is represented by np, while the link
between two satellite nodes is represented by l(npi , n

p
j ), where

npi , n
p
j ∈ NP . The total number of physical nodes is speci-

fied as N . The node resource attributes of satellite Internet
include computing resource CPU(NP ) and storage resource
ST O(NP ). We assume that the satellite communications
of the Tiansuan constellation compete for channel resources
within a frequency band. Therefore, the resource attribute of
the physical link is the bandwidth resource BW(LP ). We only
consider the operation of the astronomical constellation in a
time slot, i.e., the topology of the Tiansuan constellation in
this time slot is fixed, and the relative connection relationship
between satellites will not change.

B. User Request Model

User requests come in the form of service function chains.
User requests also consist of network nodes and links. A
complete user request is represented by GU . The user request
node is represented by NU , and nu represents a specific virtual
network function. The user request link is represented by LU ,
and lu represents the link between virtual network functions.
User request node resource requirements include computing
resource requirements CPU(NU ) and storage resource re-
quirements ST O(NU ). The link resource requirement of the
user request is the bandwidth resource BW(LP ). User requests
need to occupy a certain type and amount of satellite network
resources. Only when the node resource requirements and link
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Fig. 1. Satellite Internet architecture.

resource requirements in the user request are satisfied at the
same time, the user request can be said to be successful.

The schematic diagram of the satellite Internet physical net-
work model with the Tiansuan constellation as the background
and the user request model is shown in Fig. 1. User requests
come in the form of service function chains, and each virtual
network function may need to be deployed on a different
satellite.

C. Problem Formulation

The profit and cost of network resource allocation are
common concerns of network providers and users. From the
expression of the physical network model, it can be seen
that the network resource allocation profit can be defined by
defining the consumption of network resources,

Pro(GU ) = CPU(NU ) + ST O(NU ) + BW(LU ). (1)

Equation (1) represents the profit of the network operator
after the user requests GU to successfully obtain the satellite
Internet resource.

The cost of network resource allocation can be calculated
by,

Cos(GU ) = CPU(NU ) + ST O(NU ) + BW(LU ) · hops(lui ),
(2)

where hops(lui ) represents the number of physical links the
user requests the link to pass through, i.e., the bandwidth
resources requested by lui are jointly provided by multiple
physical links.

User requests need to constantly occupy satellite Internet
resources. The number of resources that satellite Internet can
provide after a period of resource allocation process may not
meet the resource requirements requested by users. Therefore,
the following constraints need to be defined,

(a) : CPU(np) ≥ CPU(nu), nu ↑ np,
(b) : ST O(np) ≥ ST O(nu), nu ↑ np,
(c) : BW(lp) ≥ BW(lu), lu ↑ lp,

(d) :
∑

nu
i ↑np

α = 1,

(e) :
∑
lui ↑lp

β ≥ 1,

(3)

where (3)a represents the consumption limit of computing
resources. Equation (3)b defines the consumption limit of
storage resources. Equation (3)c shows the consumption limit
of spectrum resources. Equation (3)d shows that a user request
node can only occupy the resources of one satellite node, while
(3)e shows that the user request link resource can be provided
by multiple satellite links.

Increasing the number of successful services requested
by users is an important means to obtain high profits. The
calculation method of the user service rate can be given by,

A = lim
T

∑T
t=0 suc(GU )∑T
t=0 num(GU )

, (4)

where
∑T

t=0 suc(GU ) represents the number of users re-
quests that successfully obtained the satellite resources, while∑T

t=0 num(GU ) represents the total number of user requests
arriving in this time slot.

The overall goal of the satellite Internet resource allocation
algorithm is to increase resource profit and the number of
service users, so the optimization goal is represented by:

maximize G = lim
T
[Pro(GU ) +A]

= lim
T
[CPU(NU ) + ST O(NU ) + BW(LU )

+

∑T
t=0 suc(GU )∑T
t=0 num(GU )

],

s.t.(3)a− (3)e.
(5)

D. Reinforcement Learning Model

The setup of each element of reinforcement learning in the
context of satellite Internet is introduced, including environ-
ment, state, agent, action, and reward signal.

Environment: The primary source of intelligent agent per-
ception, i.e, the satellite Internet.

State: The environmental state of satellite Internet, in-
cluding the availability of various network resources, i.e.,
S = {CPU(NP ),ST O(NP ),BW(LP )}.

Agent: The main body that interacts with the environment,
which is replaced by a self-built policy network model.
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Fig. 2. Algorithm framework of satellite Internet resource allocation based
on policy network.

Action: The policy imposed by the agent on the environ-
ment, i.e., the specific network resource allocation policy.

Reward: The feedback from the environment to the agent
after the agent acts on the environment. Expressed by (5).

III. RESOURCE ALLOCATION ALGORITHM BASED ON
POLICY NETWORK

A. Attribute Matrix

The algorithm framework of the satellite Internet resource
allocation based on the policy network is shown in Fig. 2,
whose operation process follows the Markov decision process.
The intelligent agent perceives state from the environment.
In the satellite Internet resource allocation problem, the state
refers to the resource state. The state is specified in the form of
an attribute matrix, while each element of the attribute matrix
is the available resource capacity of the satellite node. Each
physical node has four attributes, namely available computing
resources, available storage resources, the sum of available
spectrum resources of the connected links, and the average
distance to other physical nodes. The above four attributes are
concatenated into an attribute vector,

avi = (CPU(npi ),ST O(n
p
i ), S BW(npi ), S DIS(lpi )). (6)

Then, the attribute vectors corresponding to each satellite
node are aggregated into an attribute matrix, which is repre-
sented by,

AM =


CPU(np

1) ST O(np
1) S BW(np

1) S DIS(lp1),
CPU(np

2) ST O(np
2) S BW(np

2) S DIS(lp2),
... ... ... ...

CPU(np
k−1) ST O(np

k−1) S BW(np
k−1) S DIS(lpk−1),

CPU(np
k) ST O(np

k) S BW(np
k) S DIS(lpk),


i = 1, 2, ..., k.

(7)

B. Structure and Function of Policy Network
The policy network model based on reinforcement learning

is divided into five layers according to functional logic. The
basic unit of policy network is neurons. The number of
neurons in the input layer is the same as the number of
physical nodes in the satellite Internet, whose function is
to receive the attribute matrix from the environment. The
convolution network is usually used to process images and
natural language, which plays the role of sharing parameters
and simplification. The convolution layer in the policy network
convolutes each attribute vector to obtain the available attribute
vector form. The convolution operation method of the attribute
vector can be given by,

Conk = ω · avk ·+b, (8)

where Conk is the convolution output of the k-th physical
node, ω is the weight vector, and b is the bias.

The computing layer performs a softmax function operation
on each available attribute vector and calculates an available
probability for the physical node corresponding to each avail-
able attribute vector. And we have,

Prok =
eConk∑
n e

Conn
. (9)

The filtering layer filters out satellite nodes that do not have
enough resources to ensure that every node resource that is
output is available. Finally, a set of satellite nodes are output
in the output layer to provide user requests.

C. Model Training and Testing
When a user request reaches the satellite Internet, the

intelligent agent senses the state of the physical network
environment at this time, i.e., extracting an attribute matrix
from the satellite Internet. After a series of operations in the
policy network, a resource allocation strategy suitable for the
underlying network at this time is obtained, which is applied to
the physical network as an action. The satellite Internet will
feed back a reward signal to the intelligent agent according
to the effect of this resource allocation strategy, and we take
(5) as the reward signal. The intelligent agent will adjust
the resource allocation strategy according to the situation of
the reward signal to obtain a larger cumulative reward. The
above process loops until the maximum number of iterations
or termination is due to insufficient resources. Each group
of physical nodes finally output from the policy network has
a probability. The user request will select the physical node
providing resources according to the probability.

D. Complexity Analysis
The training process of the algorithm is performed offline.

The test process is divided into two stages: satellite node
resource allocation and link resource allocation. In the node
resource allocation stage, the time complexity is related to
factors such as state space, state space, and network model
parameters. In the link resource allocation stage, the breadth-
first search strategy is adopted and its time complexity is
O(|NP |+ |LP |).



TABLE I
PARAMETER SETTING

Parameter name Parameter value
number of satellite nodes 100
CPU resource capacity of satellite nodes U[4,8]TFLOPS
storage resource capacity of satellite nodes U[1,2]T
bandwidth resource capacity of physical links U[100,200]Mbs
number of user requests 1000
CPU requirements of user request U[0,0.5]TFLOPS
storage requirements of user request U[0,0.1]T
bandwidth requirements of user request U[0,50]Mbs
learning rate 0.005

IV. PERFORMANCE EVALUATION

A. Parameter Setting

The setting of simulation parameters refers to the actual
hardware parameters of the satellites in orbit in the Tiansuan
constellation. A series of text files are generated by program-
ming to save the parameters of satellite Internet and user
requests, so as to simulate the Tiansuan constellation. The pa-
rameters in the text file include network node location, mutual
connection relationship, available resource value, and resource
demand value, etc. We consider the user request process for
one slot. During this period, it can be considered that the
connection relationship between satellites is unchanged, i.e.,
the satellite network topology is fixed. The detailed parameter
settings are shown in TABLE I.

B. Results and Analysis

The goal of the satellite network resource allocation al-
gorithm based on the policy network is to allocate network
resources reasonably and to increase the allocation profit of
network resources and the number of service users. Therefore,
the performance of the algorithm is tested from the above two
aspects.

The test results of satellite network resource allocation profit
are shown in Fig. 3. The proposed algorithm is compared
with the NRM algorithm and the RCR algorithm. During
a user request process, the resource allocation profit of the
proposed algorithm is always relatively high. The advantage
of the proposed algorithm is that makes full use of the
intelligence of reinforcement learning. The agent can sense the
changes in satellite Internet resources in real-time and make
reasonable resource allocation decisions for user requests. The
NRM algorithm and the RCR algorithm are heuristic resource
allocation algorithms, which allocate resources to each user
request based on greedy sorting. The former sorts network
nodes, while the latter sort network links, which cannot ensure
reasonable allocation of resources.

The test results of the number of service users of the satellite
Internet resource allocation algorithm are shown in Fig. 4. On
the whole, the user service rate of the proposed algorithm is
higher than that of the NRM algorithm and the RCR algorithm.
The policy network based on reinforcement learning can make
more reasonable resource allocation decisions and serve more
user requests, so the user service rate is relatively high. In
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Fig. 3. Test results of resource allocation profit.
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Fig. 4. Test results of ratio of service users.

the initial stage, the service success rate of the algorithm
has dropped significantly. It means that most user requests
cannot obtain sufficient resources. Since the RCR algorithm
adopts a greedy strategy to allocate resources for user requests,
the resources of physical nodes with larger resource capacity
are preferentially allocated to users in the initial stage. The
number of user requests that can be satisfied at this time is
high. The allocation mode of the NRM algorithm and the
RCR algorithm causes more resource fragments and is not
conducive to accepting more user requests.

Besides, we test the flexibility of the algorithm by changing
the user’s storage resource requirements. The initial storage
resource requirement of user requests is [0,0.1]T. We adjust
the storage resource requirements of users to [0,0.125]T and
[0,0.25]T respectively. The performance of the algorithm in
network resource allocation profit and the user service rate is
observed. The experimental results are shown in Fig. 5 and
Fig. 6.

When the storage resource requirement of users is [0,0.1]T,
the resource allocation profit and the number of service users
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Fig. 5. Resource allocation profit for different storage resource requirements.
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Fig. 6. User service rate for different storage resource requirements.

are highest. Due to the limited amount of satellite Internet
resources, when users request fewer network resources, the
number of users that can be served will be greatly increased
through algorithm scheduling. If a user has a large storage
resource requirement, each user request occupies a large
number of network resources. Therefore, the number of users
that can be served will decrease, and the profit from network
resource allocation will also decrease.

V. CONCLUSION

Facing the deployment and application of the Tiansuan
constellation, this paper proposes an optimal allocation scheme
for satellite network resources from the theoretical and simula-
tion levels. The proposed multi-dimensional network resource
allocation algorithm based on the policy network utilizes
reinforcement learning techniques. The key link is that the
established policy network can autonomously perceive the
state of the underlying physical network environment and for-
mulate resource allocation strategies that meet user requests.
Simulation experiments are carried out from the perspective of

network resource allocation profit and the number of service
users. The results show that the proposed algorithm has better
performance than other comparative algorithms. In the future,
more types of satellite network resources can be considered.
The policy network structure is improved to adapt to the in-
creasingly complex satellite network environment. In addition,
it is necessary to deploy this algorithm on the real Tiansuan
constellation in the future to verify the actual performance. The
proposed scheme is also expected to provide a reference for
resource management of other large-scale satellite networks.
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